ET-HP[™] is a two-component, high solids, epoxy-based system for use as a high-strength, non-shrink anchor grouting material. Resin and hardener are dispensed and mixed simultaneously through the mixing nozzle. ET-HP meets the ASTM C-881 specifications for Type I, II, IV and V, Grade 3, Classes B and C, except gel time.

USES: • Threaded rod anchoring

- Rebar doweling
- Bonding hardened concrete to hardened concrete
- · Pick-proof sealant around doors, windows and fixtures
- Paste-over for crack injection

CODES: ICC-ES ER-4945 (URM); City of L.A. RR25185, RR25120; Multiple DOT Listings.

The load tables list values based upon results from the most recent testing and may not reflect those in current code reports. Where code jurisdictions apply, consult the current reports for applicable load values.

APPLICATION: Surfaces to receive epoxy must be clean. For installations in or through standing water, see page 225 for details. The base material temperature must be 40°F or above at the time of installation. For best results, material should be 70°F - 80°F at the time of application. Cartridges should not be immersed in water to facilitate warming. To warm cold material, the cartridges should be stored in a warm, uniformly heated area or storage container for a sufficient time to allow epoxy to warm completely. Mixed material in nozzle can harden in 5–7 minutes at a temperature of 40°F or above.

INSTALLATION: See pages 70-71

SHELF LIFE: 24 months from date of manufacture in unopened container

STORAGE CONDITIONS: For best results store between 45°F - 90°F. To store partially used cartridges, leave hardened nozzle in place. To re-use, attach new nozzle.

COLOR: Resin – white, hardener – black. When properly mixed, ET-HP adhesive will be a uniform medium gray color.

CLEAN UP: Uncured material — Wipe up with cotton cloths. If desired scrub area with abrasive, waterbased cleaner and flush with water. If approved, solvents such as ketones (MEK, acetone, etc.), lacquer thinner, or adhesive remover can be used. DO NOT USE SOLVENTS TO CLEAN ADHESIVE FROM SKIN. Take appropriate precautions when handling flammable solvents. Solvents may damage surfaces to which they are applied. Cured material: Chip or grind off surface.

TEST CRITERIA: Anchors installed with ET-HP[™] adhesive have been tested in accordance with ICC-ES's *Acceptance Criteria for Adhesive Anchors in Masonry Elements* (AC58) and *Adhesive Anchors in Concrete Elements* (AC308).

In addition, anchors installed with ET-HP adhesive have been tested in accordance with ICC-ES's Acceptance Criteria for Unreinforced Masonry Anchors (AC60).

PROPERTY	TEST METHOD	RESULTS
Consistency (77°F)	ASTM C 881	Non-sag/thixotropic paste
Heat deflection	ASTM D 648	168°F (76°C)
Bond strength (moist cure)	ASTM C 882	2,030 psi (2 days) 4,240 psi (14 days)
Water absorption	ASTM D 570	0.19% (24 hours)
Compressive yield strength	ASTM D 695	9,174 psi (24 hours) 13,390 psi (7 days)
Compressive modulus	ASTM D 695	658,200 psi (7 days)
Gel time (77°F)	ASTM C 881	10 min. – 60 gram mass 30 min – Thin film

CHEMICAL RESISTANCE Very good to excellent against distilled water, inorganic acids and alkalis. Fair to good against organic acids and alkalis, and many organic solvents. Poor against ketones. For more detailed information, visit www.strongtie.com.

ET-HP22

ET-HP56

ET-HP Cartridge Systems

Model No.	Capacity ounces (cubic inches)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing4 Nozzle
ET-HP22	22 (39.7)	side-by-side	10	EDT22S,EDTA22P or EDTA22CKT	EMN22i
ET-HP56	56 (101.1)	side-by-side	6	EDTA56P	EMN22i or EMN50

1. Cartridge and bulk estimation guides are available on pages 48-51.

 Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available on pages 72–77.

 Use only appropriate Simpson Strong-Tie® mixing nozzle in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair epoxy performance.

SUGGESTED SPECIFICATIONS: Anchoring adhesive shall be a two-component high solids epoxy based system supplied in manufacturer's standard side-by-side cartridge and dispensed through a static-mixing nozzle supplied by the manufacturer. Epoxy shall meet the minimum requirements of ASTM C-881 specification for Type I, II, IV, and V, Grade 3, Class B and C, except gel time, and must develop a minimum 13,390 psi compressive yield strength after 7 day cure. Epoxy must have a heat deflection temperature of a minimum 168°F (76°C). Adhesive shall be ET-HP[™] adhesive from Simpson Strong-Tie, Pleasanton, CA. Anchors shall be installed per Simpson Strong-Tie instructions for ET-HP[™] adhesive.

ACCESSORIES: See pages 72–77 for information on dispensing tools, mixing nozzles and other accessories.

SIMPSOI

Sirong-

Cure Schedule

Epoxy Adhesives

	Base Material Temperature							
°F	°F °C							
40	4	72 hrs.						
60	16	24 hrs.						
80	27	24 hrs.						
100	38	12 hrs.						

In-Service Temperature Sensitivity

Base M Tempe	laterial erature	Percent Allowable	
°F	°C	Load	
40	4	100%	1. Refer to temperature-sensitivity chart
70	21	100%	for allowable bond strength reduction for temperature. See page 225 for
110	43	100%	more information.
135	57	85%	2. Percent allowable load may be linearly
150	66	69%	interpolated for intermediate base material temperatures.
180	82	58%	3. $^{\circ}C = (^{\circ}F-32) / 1.8$
			(-)

ET-HP Epoxy Anchor Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

Characteristic		Symbol	Units	Nominal Anchor Diameter (in.) / Rebar Size								
Gliaracteristic		Symbol	UIIIIS	³ / ₈ / # 3	½ / # 4	⁵ / ₈ / #5	³ ⁄4 / # 6	⅓ / # 7	1 / #8	1 ¼/ #10		
		Ins	stallation In	formation								
Drill Bit Diameter		d _{hole}	in.	1/2	5⁄8	3⁄4	7⁄8	1	11/8	1%		
Maximum Tightening Torque	Tinst	ft-lb	10	20	30	45	60	80	125			
Permitted Embedment Depth Range ²	Minimum	h _{ef}	in.	23/8	23/4	31⁄8	31⁄2	33⁄4	4	5		
Permitteu Embeument Deptir Kange-	Maximum	h _{ef}	in.	41/2	6	7 ½	9	101⁄2	12	15		
Minimum Concrete Thickness		h _{min}	in.		h _{ef} + 5d _o							
Critical Edge Distance		Cac	in.	1	2.75 x h _{ef}							
Minimum Edge Distance		C _{min}	in.	1		1	3⁄4			2¾		
Minimum Anchor Spacing		S _{min}	in.	3						6		

1. The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308.

2. Minimum and maximum embedment depths are are listed in accordance with ICC-ES AC308 requirements.

ET-HP™ (formerly ET) Anchoring Adhesive

ET-HP Epoxy Anchor Tension Strength Design Data for Threaded Rod and Rebar in Normal-Weight Concrete^{1,11}

	nchor Tension Strength Design Data for and Rebar in Normal-Weight Concrete ^{1,11}								an e	page 13 for explanation of load table icons
	•	Cumhal	Unite		N	lominal A	nchor Dia	meter (in	.)	
	Characteristic	Symbol	Units	³ / ₈ / #3	½ / # 4	⁵⁄8 / #5	¾ / #6	⅓ / # 7	1 / #8	1¼/#10
	Steel S	Strength in	n Tensio	n						
	Minimum Tensile Stress Area	Ase	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel - ASTM A193, Grade B7			9,750	17,750	28,250	41,750	57,750	75,750	121,125
Threaded	- ASTM F1554, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
Rod	- Type 410 Stainless (ASTM A193, Grade B6)	Nsa	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
nou	- Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor - Steel Failure	ϕ	1	a day			0.75 ⁸			
	Minimum Tensile Stress Area	Ase	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.23
Rebar	Tension Resistance of Steel – Rebar (ASTM A615, Grade 60)	Nsa	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700
	Strength Reduction Factor – Steel Failure	ϕ	_				0.65 ⁸			
	Concrete Breakout Strength	in Tensio	n (2,50	0 psi \leq f' _c	\leq 8,000 p	isi)				
Effectiveness Fa	ctor - Uncracked Concrete	<i>k</i> uncr	—				24			
Strength Reduct	tion Factor - Breakout Failure	ϕ	0.65 ¹⁰							
	Bond Strength in Ten	sion (2,50)0 psi \leq	$f_{c}^{\prime} \leq 8,00$	l0 psi)					
Temp. Range 1 for Uncracked Concrete ^{2,4,5}	Characteristic Bond Strength ⁷	𝛛𝑘,uncr	psi	1,590	1,535	1,485	1,435	1,380	1,330	1,225
Temp. Range 2 for Uncracked Concrete ^{3,4,5}	Characteristic Bond Strength ^{6,7}	τ _{k,uncr}	psi	435	420	405	395	380	365	335
	Bond Strength in Tension – Bond Strength Redu	ction Fac	tors for	Periodic o	or Continu	ous Speci	ial Inspec	tion		
	tion Factor - Dry Concrete	ϕ_{dry}	<u> </u>				0.65 ⁹			
Strength Reduct	tion Factor - Water-saturated Concrete	<i>\$</i> sat	—		-		0.45 ⁹			
The information proceeding this table is to be used in conjunction with the design = 0. The value of Lenglise when both the lead combinations of AOL240 Continu O.240										

1. The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.

2. Temperature Range 1: Maximum short-term temperature of 110°F (43°C). Maximum long-term temperature of 75°F (24°C).

3. Temperature Range 2: Maximum short-term temperature of 150°F (66°C). Maximum long-term temperature of 110°F (43°C).

4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

5. Long-term concrete temperature are constant temperatures over a significant time period.

6. For anchors that only resist wind or seismic loads, bond strengths may be multiplied by 2.25.

7. For anchors installed in overhead and subjected to tension resulting from sustained loading, multiply the value calculated for N_a according to ICC-ES AC308 by 0.75.

8. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .

9. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .

10. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of $\varphi.$ If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .

11. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.

Strong-I

See page 13 for

ET-HP™ (formerly ET) Anchoring Adhesive

ET-HP[™] Epoxy Anchor Shear Strength Design Data for Threaded Rod and Rebar in Normal-Weight Concrete^{1,5}

	Characteristic	Sumbol	Unito		Nominal	Anchor	Diamete	r (in.) / F	Rebar Siz	ze
	Cildracteristic	Symbol	Units	³∕8 / #3	½ / # 4	⁵⁄% / #5	³ ⁄4 / #6	⅔ / # 7	1 / #8	1¼/#10
	Steel Strengtl	h in Shea	ır							
	Minimum Shear Stress Area	Ase	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Shear Resistance of Steel - ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675
Threaded Rod	- ASTM F1554, Grade 36		lb.	2,260	4,940	7,865	11,625	16,080	21,090	33,720
Threaded Rod	- Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	ID.	4,290	9,370	14,910	22,040	30,490	40,000	63,955
	- Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140
	Strength Reduction Factor - Steel Failure	φ		0.652						
	Minimum Shear Stress Area	A _{se}	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.23
Rebar	Shear Resistance of Steel – Rebar (ASTM A615, Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
	Strength Reduction Factor – Steel Failure	φ					0.60 ²			
	Concrete Breakout S	trength i	n Shear							
Outside Diame	ter of Anchor	do	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.250
Load Bearing L	ength of Anchor in Shear	le	in.	h _{ef}						
Strength Redu	ction Factor – Breakout Failure	φ	_				0.70 ³			
	Concrete Pryout St	rength in	Shear							
Coefficient for	Pryout Strength	k _{cp}	_				2.0			
Strength Redu	ction Factor – Pryout Failure	φ	_				0.704			
	an ann an air air an taraichte an bhe chuir an tar ann an taraichte an chuir abh abh an de chuir an tarai									

1. The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.

2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .

The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load 3. combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .

4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .

5. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.

Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete

Rod Dia.	Drill Bit	Embed. Depth	Critical Edge	Critical Spacing		Tension Load I on Bond Sti			Tension Load d on Steel Stre	ngth
in. (mm)	Dia. in.	in. (mm)	Dist.	Dist.	f' _c ≥ 2000 psi (13.8 MPa) Concrete			F1554 Grade 36	A193 GR B7	F593 304SS
()		()	(mm)	(mm)	Ultimate Std. Dev. Allowable lbs. (kN) lbs. (kN) lbs. (kN)		Allowable lbs. (kN)	Allowable lbs. (kN)	Allowable lbs. (kN)	
3⁄8 (9.5)	1⁄2	3 ½ (89)	51⁄4 (133)	14 (356)	8,777 (39.0)	324 (1.4)	2,195 (9.8)	2,105 (9.4)	4,535 (20.2)	3,630 (16.1)
1/2 (12.7)	5⁄8	4 ¼ (108)	6¾ (162)	17 (432)	15,368 (68.4)	605 (2.7)	3,840 (17.1)	3,750 (16.7)	8,080 (35.9)	6,470 (28.8)
5⁄8 (15.9)	3⁄4	5 (127)	7½ (191)	20 (508)	22,877 (101.8)	718 (3.2)	5,720 (25.4)	5,875 (26.1)	12,660 (56.3)	10,120 (45.0)
3⁄4 (19.1)	7⁄8	6¾ (171)	101% (257)	27 (686)	35,459 (157.7)	4,940 (22.0)	8,865 (39.4)	8,460 (37.6)	18,230 (81.1)	12,400 (55.2)
7/8 (22.2)	1	7¾ (197)	11 % (295)	31 (787)	43,596 (193.9)	1,130 (5.0)	10,900 (48.5)	11,500 (51.2)	24,785 (110.2)	16,860 (75.0)
1 (25.4)	1 1⁄8	9 (229)	13½ (343)	36 (914)	47,333 (210.5)	1,243 (5.5)	11,835 (52.6)	15,025 (66.8)	32,380 (144.0)	22,020 (97.9)
1 ½ (28.6)	1¼	101/8 (257)	15¼ (387)	40 ½ (1029)	61,840 (275.1)	_	15,460 (68.8)	19,025 (84.6)	41,000 (182.4)	27,880 (124.0)
11⁄4 (31.8)	1 3⁄8	11 ¼ (286)	16 % (429)	45 (1143)	78,748 (350.3)	4,738 (21.1)	19,685 (87.6)	23,490 (104.5)	50,620 (225.2)	34,420 (153.1)

The allowable loads listed under allowable bond are based on a 2.

- safety factor of 4.0. Refer to allowable load-adjustment factors for spacing and edge 3 distance on pages 44 and 45.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction. provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- Anchors are not permitted to resist tension forces in overhead 6. or wall installations unless proper consideration is given to fireexposure and elevated-temperature conditions.

See page 13 for an explanation of

the load table icons

See page 13 for an explanation of the load table icons

ET-HP™ (formerly ET) Anchoring Adhesive

₩= 6"or 8"

•

Edge and end distances for

threaded rod in concrete

foundation stemwall corner

installation

Shear Loads for Threaded Rod Anchors in Normal-Weight Concrete

Rod Dia.	Drill Bit	Embed. Depth	Critical Edge	Critical Spacing		ar Load Base ete Edge Dis			ar Load Based Steel Strength	on
in. (mm)	Dia. in.	in. (mm)	Dist.	Dist.	f' _c ≥ 2000 psi (13.8 MPa) Concrete			F1554 Grade 36	A193 GR B7	F593 304SS
()		()	(mm)	(mm)	Ultimate Std. Dev. Allowable Ibs. (kN) Ibs. (kN) Ibs. (kN)		Allowable lbs. (kN)	Allowable lbs. (kN)	Allowable Ibs. (kN)	
3⁄8 (9.5)	1⁄2	3 ½ (89)	51⁄4 (133)	51⁄4 (133)	7,615 (33.9)	591 (2.6)	1,905 (8.5)	1,085 (4.8)	2,340 (10.4)	1,870 (8.3)
1/2 (12.7)	5⁄8	4 ¼ (108)	6 % (162)	6 % (162)	11,273 (50.1)	1,502 (6.7)	2,820 (12.5)	1,930 (8.6)	4,160 (18.5)	3,330 (14.8)
5⁄8 (15.9)	3⁄4	5 (127)	7½ (191)	7 ½ (191)	19,559 (87.0)	1,289 (5.7)	4,890 (21.8)	3,025 (13.5)	6,520 (29.0)	5,220 (23.2)
3⁄4 (19.1)	7⁄8	6¾ (171)	101⁄8 (257)	101% (257)	27,696 (123.2)	2,263 (10.1)	6,925 (30.8)	4,360 (19.4)	9,390 (41.8)	6,385 (28.4)
7/8 (22.2)	1	7¾ (197)	11 % (295)	11 5⁄8 (295)	—	_	6,925 (30.8)	5,925 (26.4)	12,770 (56.8)	8,685 (38.6)
1 (25.4)	1 1⁄8	9 (229)	13½ (343)	13½ (343)	53,960 (240.0)	3,821 (17.0)	13,490 (60.0)	7,740 (34.4)	16,680 (74.2)	11,345 (50.5)
1 ½ (28.6)	1¼	101/8 (257)	15¼ (387)	15¼ (387)	59,280 (263.7)	_	14,820 (65.9)	9,800 (43.6)	21,125 (94.0)	14,365 (63.9)
1¼ (31.8)	1 3⁄8	11 ¼ (286)	16 % (429)	16 % (429)	64,572 (287.2)	3,503 (15.6)	16,145 (71.8)	12,100 (53.8)	26,075 (116.0)	17,730 (78.9)

1. Allowable load must be the lesser of the load based on concrete edge distance or steel strength.

2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.

3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 45 and 46.

4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

Rod Dia.			Stemwall	Min.	Min.		on Load Ba Sond Streng		Tension Load Based on Steel Strength	load table ic
in. (mm)	Dia. in.	Depth in. (mm)	Width in. (mm)	Edge Dist. in.	End Dist. in.		" _c ≥ 2000 p 8 MPa) Coi		F1554 Grade 36	
		()	()	(mm)	(mm)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Allowable Ibs. (kN)	
5⁄8 (15.9)	3⁄4	9½ (241.3)	6 (152.4)	1¾ (44.5)	5 (127.0)	10,720 (47.7)	1,559 (6.9)	2,680 (11.9)	5,875 (26.1)	1
5⁄8 (15.9)	3⁄4	12 (304.8)	6 (152.4)	1¾ (44.5)	5 (127.0)	16,150 (71.8)	260 (1.2)	4,040 (18.0)	5,875 (26.1)	
7/8 (22.2)	1	12 ½ (317.5)	8 (203.2)	1¾ (44.5)	5 (127.0)	17,000 (75.6)	303 (1.3)	4,250 (18.9)	11,500 (51.2)	
7/8 (22.2)	1	15½ (393.7)	8 (203.2)	1¾ (44.5)	5 (127.0)	23,340 (103.8)	762 (3.4)	5,835 (26.0)	11,500 (51.2)	

1. Allowable load must be the lesser of the bond or steel strength.

2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.

3. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature. 4. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist

wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

See page 13 for an explanation of the load table icons

		for Rebar Jht Concre										
Rebar	Drill	Embed.	Critical	Critical		Tensio	on Load Base	d on Bond S	Strength		Tension Load Based on Steel Strength	
Size No. (mm)	Bit Dia. in.	Depth in. (mm)	Edge Dist. in.	Spacing Dist. in.		f' _c ≥ 2000 p: .8 MPa) Con			f' _c ≥ 4000 p .6 MPa) Cor		ASTM A615 Grade 60 Rebar	
(11111)		(11111)	(mm)	(mm)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allowable Ibs. (kN)	Allowable Ibs. (kN)	
#4	5/8	4 ¼ (108)	6 % (162)	17 (432)	17,596 (78.3)	533 (2.4)	4,400 (19.6)	_	_	4,400 (19.6)	4,800	
(12.7)	78	6 (152)	9 (229)	24 (610)	_	_	_	20,250 (90.1)	263 (1.2)	5,060 (22.5)	(21.4)	
#5	3/4	5 (127)	7½ (191)	20 (508)	25,427 (113.1)	1,899 (8.4)	6,355 (28.3)		_	6,355 (28.3)	7,440	
(15.9)	%4	9 ³ / ₈ (238)	14 ½ (359)	37 ½ (953)	_	_	_	29,510 (131.3)	2,270 (10.1)	7,375 (32.8)	(33.1)	
#6	7/	6³/4 (171)	10 ½ (257)	27 (686)	41,812 (186.0)	595 (2.6)	10,455 (46.5)	_	_	10,455 (46.5)	10,560	
(19.1)	7⁄8	11 ¼ (286)	16% (429)	45 (1143)	_	_		44,210 (196.7)	1,227 (5.5)	11,050 (49.2)	(47.0)	
#7		7¾ (197)	11 5/8 (295)	31 (787)	50,241 (223.5)	2,995 (13.3)	12,560 (55.9)	_	_	12,560 (55.9)	14,400 (64.1)	
(22.2)	1	13 ½ (333)	19¾ (502)	52 ½ (1334)	_	_	_	59,325 (263.9)	3,444 (15.3)	14,830 (66.0)		
		9 (229)	13½ (343)	36 (914)	60,145 (267.5)	5,493 (24.4)	15,035 (66.9)	_	_	15,035 (66.9)		
#8 (25.4)	1 1⁄8	12 (305)	18 (457)	48 (1219)	_		_	_	_	18,260 (81.2)	18,960 (84.3)	
		15 (381)	22 ½ (572)	60 (1524)	_	_	—	85,970 (382.4)	17,965 (79.9)	21,490 (95.6)		
		9 (229)	13½ (343)	36 (914)	_	_	15,035 (66.9)	_	_	15,035 (66.9)		
#9 (28.6)	1¼	13 (330)	19½ (495)	52 (1321)	_	_	—	_	_	21,310 (94.8)	24,000 (106.8)	
		16 % (429)	25 % (645)	67 ½ (1715)	—	—	—	110,370 (491.0)	4,768 (21.2)	27,590 (122.7)		
		11 ¼ (286)	16 % (429)	45 (1143)	70,685 (314.4)	1,112 (4.9)	17,670 (78.6)	_	_	17,670 (78.6)		
#10 (31.8)	1½	15 (381)	22 ½ (572)	60 (1524)	_		—		_	23,960 (106.6)	30,480 (135.6)	
		18¾ (476)	28 ½ (714)	75 (1905)	—		—	120,976 (538.1)	6,706 (29.8)	30,245 (134.5)		
		12 % (314)	18 5⁄8 (473)	491⁄2 (1257)	78,422 (348.8)	4,603 (20.5)	19,605 (87.2)	—	_	19,605 (87.2)		
#11 (34.9)	1 5⁄8	16½ (419)	24¾ (629)	66 (1676)	—	—	—	—	—	28,605 (127.2)	37,440 (166.5)	
		20 5/8 (524)	31 (787)	82 ½ (2096)	—	—	—	150,415 (669.1)	8,287 (36.9)	37,605 (167.3)	5	
#14 (44.5)	2	15¾ (400)	23 5/8 (600)	63 (1600)	91,518 (407.1)	3,797 (16.9)	22,880 (101.8)	_	_	22,880 (101.8)	54,000 (240.2)	

1. Allowable load must be the lesser of the bond or steel strength.

2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.

3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 45 and 46.

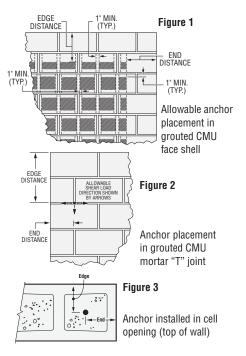
4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

6. Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

Shear Loads for Rebar Dowels in Normal-Weight Concrete

Rebar Size	Drill Bit Dia.	Embed. Depth	Critical Edge	Critical Spacing	Conci	ar Load Base rete Edge Dis f'c ≥ 2500 psi	tance	Shear Load Based on Steel Strength ASTM A615
No. (mm)	in.	in. (mm)	Dist. in.	Dist. in.		2 MPa) Conc		Grade 60 Rebar
()		()	(mm)	(mm)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allow. Ibs. (kN)	Allowable Ibs. (kN)
#4 (12.7)	5⁄8	41⁄4 (108)	8 (203)	6 % (162)	13,564 (60.3)	971 (4.3)	3,390 (15.1)	3,060 (13.6)
#5 (15.9)	3⁄4	5 (127)	10 (254)	7 ½ (191)	20,914 (93.0)	3,034 (13.5)	5,230 (23.3)	4,740 (21.1)
#6 (19.1)	7⁄8	6¾ (171)	12 (305)	101% (257)	30,148 (134.1)	1,322 (5.9)	7,535 (33.5)	6,730 (29.9)
#7 (22.2)	1	7¾ (197)	14 (356)	11 % (295)	39,838 (177.2)	1,854 (8.2)	9,960 (44.3)	9,180 (40.8)
#8 (25.4)	1 1⁄8	9 (229)	16 (406)	13½ (343)	53,090 (236.2)	3,562 (15.8)	13,270 (59.0)	12,085 (53.8)
#9 (28.7)	1¼	101/8 (257)	18 (457)	15½ (387)	63,818 (148.7)	3,671 (16.3)	15,955 (71.0)	15,300 (68.1)
#10 (32.3)	1 1⁄2	11 ¼ (286)	20 (508)	16 % (429)	82,782 (368.2)	2,245 (10.0)	20,695 (92.1)	19,430 (86.4)
#11 (35.8)	1 5⁄8	12 % (314)	22 (559)	18% (473)	96,056 (427.3)	3,671 (16.3)	24,015 (106.8)	23,865 (106.2)
#14 (43.0)	2	12¾ (314)	22 (559)	18% (473)		_	24,015 (106.8)	34,425 (153.1)


Tension and Shear Loads for Threaded Rod Anchors in 6 and 8-inch Normal-Weight Grout-Filled CMU

Rod Dia.	Drill Bit	Embed. Depth ⁸	Min. Edge	Min. End	Min. Spacing		nd 8-inch Gr le Loads Bas		-			
in.	Dia.	in.	Dist.	Dist.	Dist.	Tens	sion	Sh	ear			
(mm)	in.	(mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate Ibs. (kN)	Allowable lbs. (kN)	Ultimate Ibs. (kN)	Allowable lbs. (kN)			
			Ancho	or Installe	d in Face	Shell (See F	igure 1)					
3/8	7⁄16	31⁄2	12 (305)	4 (102)	14 (356)	6,489 (28.9)	1,300 (5.8)	5,231 (23.3)	1,045 (4.6)			
(9.5)	716	(89)	12 (305)	12 (305)	14 (356)	7,247 (32.2)	1,450 (6.4)	6,738 (30.0)	1,350 (6.0)			
1/2	9/	41⁄4	12 (305)	4 (102)	17 (432)	8,646 (38.5)	1,730 (7.7)	5,705 (25.4)	1,140 (5.1)			
(12.7)	⁹ ⁄16	(108)	12 (305)	12 (305)	17 (432)	8,975 (39.9)	1,795 (8.0)	10,879 (48.4)	2,175 (9.7)			
		4 3⁄4	12 (305)	4 (102)	19 (483)	10,213 (45.4)	2,045 (9.1)	5,973 (26.6)	1,195 (5.3)			
5⁄8 (15.9)	3⁄4	(121)	12 (305)	12 (305)	19 (483)	11,290 (50.2)	2,260 (10.1)	13,027 (57.9)	2,605 (11.6)			
		6 (152)	4 (102)	45⁄8 (117)	24 (610)	4,905 (21.8)	980 (4.4)	4,766 (21.2)	955 (4.2)			
3⁄4	7/8	6 ³ ⁄4	12 (305)	4 (102)	27 (686)	11,976 (53.3)	2,395 (10.7)					
(19.1)	78	(171)	12 (305)	12 (305)	27 (686)		_	19,141 (85.1)	3,830 (17.0)			
			Anchor I	nstalled i	n Mortar "	T" Joint (Se	e Figure 2)					
3⁄8 (9.5)	7⁄16	3 ½ (89)	8 (203)	8 (203)	14 (356)	7,646 (34.0)	1,530 (6.8)	5,507 (24.5)	1,100 (4.9)			
1⁄2 (12.7)	9⁄16	41⁄4 (108)	8 (203)	8 (203)	17 (432)	9,529 (42.4)	1,905 (8.5)	8,003 (35.6)	1,600 (7.1)			
5⁄8 (15.9)	3⁄4	4³⁄4 (121)	8 (203)	8 (203)	19 (483)	9,955 (44.3)	1,990 (8.9)	9,529 (42.4)	1,905 (8.5)			
3⁄4 (19.1)	7⁄8	6³⁄4 (171)	16 (406)	8 (203)	27 (686)			7,238 (32.2)	1,450 (6.4)			
		Anch				<u>` '</u>	l) (See Figu	re 3)				
5⁄8 (15.9)	3⁄4	6 (152)	4 (102)	45⁄8 (117)	24 (610)	6,721 (29.9)	1,345 (6.0)	4,833 (21.5)	965 (4.3)			
3⁄4 (19.1)	7⁄8	6 (152)	4 (102)	45% (117)	24 (610)	_	1,345 (6.0)	_	965 (4.3)			

See page 13 for an explanation of the load table icons

- Allowable load must be the lesser of the load based on concrete edge distance or steel strength.
- 2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 45 and 46.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- Values for 6- and 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f^{*}_m, at 28 days is 1500 psi.
- Embedment depth is measured from the outside face of the concrete masonry unit for installations through a face shell.
- Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 5. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 6. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 7. Anchors must be spaced a minimum distance of four times the anchor embedment.
- 8. For embedment depths of 6 ¾", 8-inch-wide normal-weight grout-filled CMU block must be used.

ET-HP™ (formerly ET) Anchoring Adhesive

simpsoi Strong-1

Tension and Shear Loads for Threaded Rod Anchors in Lightweight, Medium-Weight and Normal-Weight Hollow CMU

Rod Dia.	Drill Bit	Embed. Depth	Min. Edge Dist.	Min. End Dist.	6 and 8-inch Hollow CMU Allowable Loads Based on CMU Strength									
in.	Dia.	in.	in.	in.	Ten	ision	Shear							
(mm)	(in.)	(mm)	(mm)	(mm)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable lbs. (kN)						
	Anchor Installed in Face Shell w/ETS Screen Tube (See Figure 1)													
1⁄2 (12.7)	11/16	3 (76.2)	4 (101.6)	45% (117.5)	1,400 (6.2)	280 (1.2)	1,326 (5.9)	265 (1.2)						
3⁄4 (19.1)	1	3 (76.2)	4 (101.6)	45% (117.5)		280 (1.2)	_	265 (1.2)						

1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.

Values for 6- and 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of 2 masonry, f'm, at 28 days is 1500 psi.

3. Embedment depth is measured from the outside face of the concrete masonry unit for installations through a face shell.

4 Allowable loads may not be increased for short-term loading due to wind or seismic forces.

5. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

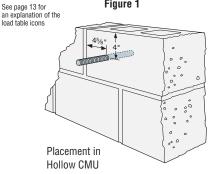
6. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

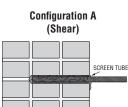
7. Anchors must be spaced a minimum distance of four times the anchor embedment.

8. Set drill to rotation-only mode when drilling into hollow CMU.

Tension and Shear Loads for Installations in Unreinforced Brick Masonry Walls Minimum URM Wall Thickness is 13" (3 wythes thick)		-	Halla	*
Masonry Walls Minimum URM Wall Thickness is 13" (3 wythes thick)	257 252	20 22		

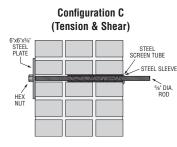
Rod Dia.	Drill Bit	Embed. Depth	Min. Edge/End Dist.	Min. Vertical	Min. Horiz.	Tension Load Based on URM Strength	Shear Load Based on URM Strength						
in. (mm)	Dia. in.	in. (mm)	Dist. in. (mm)	Spacing Dist. in.	Spacing Dist. in.	Minimum Net Mortar Strength = 50 psi	Minimum Net Mortar Strength = 50 psi						
			()	(mm)	(mm)	Allowable lbs. (kN)	Allowable lbs. (kN)						
	Configuration A (Simpson ETS or ETSP Screen Tube Required)												
3/4	4	8	24	18	18		1,000						
(19.1)		(203)	(610)	(457)	(457)	—	(4.4)						
		Con	figuration B	(Simpson	ETS or ETS	SP Screen Tube Required	1)						
3⁄4	4	13	16	18	24	1,200	1,000						
(19.1)		(330)	(406)	(457)	(610)	(5.3)	(4.4)						
	Configuration C (Simpson ETS Screen Tube and AST Steel Sleeve Required)												
5⁄8	4	**	24	18	18	1,200	750						
(15.9)	1		(610)	(457)	(457)	(5.3)	(3.3)						


Threaded rods must comply with ASTM F1554 Grade 36 1. minimum


- 2. All holes are drilled with a 1" diameter carbide-tipped drill bit with the drill set in the rotation-only mode.
- 3. The unreinforced brick walls must have a minimum thickness of 13 inches (three wythes of brick).
- The allowable load is applicable only where in-place 4 shear tests indicate minimum net mortar strength of 50 psi
- 5. The allowable load for Configuration B and C anchors subjected to a combined tension and shear load is determined by assuming a straight-line relationship between allowable tension and shear
- The anchors installed in unreinforced brick walls are limited to resisting seismic or wind forces only.
- 7. Configuration A has a straight threaded rod or rebar embedded 8 inches into the wall with a 31/32" diameter by 8-inch long screen tube (part # ETS758 or ETS758P). This configuration is designed to resist shear loads only.

8. Configuration B has a 3/4" threaded rod bent and installed at a 22.5-degree angle and installed 13 inches into the wall, to within 1-inch (maximum) of the exterior wall surface. This configuration is designed to resist tension and shear loads. The pre-bent threaded rod is installed with a 31/32" diameter by 13-inch long screen tube (part # ETS7513 or ETS7513P).

- Configuration C is designed to resist tension and shear 9 forces. It consists of a 5/8" diameter, ASTM F1554 Grade 36 threaded rod and an 8" long sleeve (part # AST800) and a $^{31}\!\!\!/_{32}$ diameter by 8-inch long screen tube (part # ETS758). The steel sleeve has a plastic plug in one end, A 6" by 6" by 3%" thick ASTM A 36 steel plate is located on the back face of the wall.
- 10. Special inspection requirements are determined by local jurisdiction and must be confirmed by the local building official.
- 11. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.



Installation Instructions for **Configuration C:**

- 1. Drill hole perpendicular to the wall to a depth of 8" with a 1" diameter carbidetipped drill bit (rotation only mode).
- 2. Clean hole with oil-free compressed air and a nylon brush.
- 3. Fill 8" steel screen tube with mixed adhesive and insert into hole.
- 4. Insert steel sleeve slowly into screen tube (adhesive will displace).
- 5. Allow adhesive to cure (see cure schedule).
- 6. Drill through plastic plug in (inside) end of steel sleeve with 5%" bit.
- 7. Drill completely through the wall with 5/8" carbide tipped concrete drill bit (rotation mode only).

ET-HP™ (formerly ET) **Technical Information**

3. Locate the embedment (E) at which the anchor is to be installed.

4. Locate the edge distance (Cact) at which the anchor is to be installed.

5. The load-adjustment factor (fc) is the intersection of the row and column. 6. Multiply the allowable load by the applicable load-adjustment factor.

1. The following tables are for reduced edge distance.

How to use these charts:

* See page 13 for an explanation of the load table icons

- 7. Reduction factors for multiple edges are multiplied together.
- 2. Locate the anchor size to be used for either a tension and/or shear load application. 8. Adjustment factors do not apply to allowable steel strength values.
 - 9. Adjustment factors are to be applied to allowable tension load based on bond strength values or allowable Shear Load Based on Concrete Edge Distance values only.

Edge	Distan	ce Te	nsion	(f _c)													2			
	Dia.	3⁄8	1/2		5⁄8		3⁄4		7⁄8		1				11/8	1¼				
Edge	Rebar		#	4	#	5	#	6	#	7	#	8	#	9		#	10	#1	11	#14
Dist.	E	31⁄2	41⁄4	6	5	<u>9 %</u>	6¾	111/4	7 3⁄4	131/8	9	15	9	16 %	101/8	111/4	18¾	12 3⁄8	20 %	15¾
Cact	Ccr	51⁄4	6 %	9	71⁄2	141/8	101/8	16%	11%	19¾	131⁄2	221/2	131⁄2	25%	15 1⁄4	16%	281/8	18%	31	23 %
(in.)	C _{min}	1¾	1¾	1¾	1¾	1¾	1 %	1¾	1¾	1¾	1¾	1¾	2¾	2¾	2¾	2 3⁄4	2¾	2¾	2¾	23/4
	f _{cmin}	0.50	0.50	0.59	0.50	0.64	0.50	0.57	0.50	0.52		0.47	0.50	0.47	0.58	0.58	0.51	0.58	0.51	0.58
13⁄4		0.50	0.50		0.50	0.64			0.50	0.52		0.47								
23⁄4		0.64	0.61	0.65	0.59	0.67	0.56	0.60	0.55	0.55		0.50	0.50		0.58		0.51	0.58		0.58
3		0.68	0.64	0.66	0.61	0.68	0.57	0.61	0.56	0.55		0.50	0.51	0.48			0.51	0.59		0.59
4		0.82	0.74	0.72	0.70	0.71	0.63	0.63	0.61	0.58		0.53	0.56		0.62	0.62	0.53	0.61	0.53	0.61
5		0.96	0.85	0.77	0.78	0.73				0.61	0.64	0.55	0.60				0.55	0.64	0.55	0.63
6		1.00	0.96	0.83	0.87	0.76	0.75	0.69	0.72	0.63		0.58	0.65		0.69	0.68	0.57	0.67	0.57	0.65
7			1.00	0.89	0.96	0.79	0.81	0.72	0.77	0.66		0.60	0.70		0.72	0.71	0.59	0.69	0.58	0.67
8				0.94	1.00	0.82	0.87	0.75	0.82	0.69		0.63	0.74	0.59	0.76	0.74	0.61	0.72	0.60	0.69
9				1.00		0.85	0.93	0.78	0.87	0.71	0.81	0.66	0.79		0.79	0.77	0.63	0.75	0.62	0.71
10						0.88	0.99	0.80	0.92	0.74	0.85	0.68	0.84	0.64	0.82	0.80	0.65	0.77	0.64	0.73
12						0.94	1.00	0.86	1.00	0.79		0.73	0.93		0.89	0.86	0.69	0.82	0.67	0.77
14						1.00		0.92		0.85	1.00	0.78	1.00		0.96	0.91	0.73	0.88	0.71	0.81
16								0.98		0.90		0.83		0.78	1.00	0.97	0.77	0.93	0.74	0.85
18								1.00		0.95		0.89		0.83		1.00	0.80	0.98	0.77	0.89
20										1.00		0.94		0.87			0.84	1.00	0.81	0.93
22												0.99		0.92			0.88		0.84	0.97
24												1.00		0.97			0.92		0.88	1.00
26														1.00			0.96		0.91	
28																	1.00		0.95	
30																			0.98	
32																			1.00	

Load-Adjustment Factors for ET-HP™ Adhesive in Normal-Weight Concrete: Edge Distance, Tension and Shear Loads

See notes below.

C-SAS-2012 © 2012 Simpson Strong-Tie Company Inc.

Edge Distance Shear (f_c)

Luye L	istanti		11 (1 _C)															\$507.600
	Dia.	3⁄8	1⁄2		5⁄8		3⁄4		7⁄8		1			1 1/8	1¼			
Edge	Rebar			#4		#5		#6		#7		#8	#9			#10	#11	#14
Dist.	E	31⁄2	41⁄4	4 1⁄4	5	5	6 3⁄4	6 3⁄4	7 3⁄4	7 3⁄4	9	9	101/8	101/8	111/4	111/4	123⁄8	123/8
Cact	Ccr	51/4	6 %	8	71⁄2	10	101/8	12	11%	14	131⁄2	16	18	151/4	16 %	20	22	22
(in.)	C _{min}	1 3⁄4	1¾	1¾	1¾	1¾	1 3⁄4	1¾	1 3⁄4	1¾	1¾	1¾	2 3/4	2 3⁄4	2¾	2 3/4	23/4	2 3/4
	f _{cmin}	0.29	0.20	0.16	0.13	0.10	0.13	0.10	0.13	0.09	0.08	0.08	0.08	0.14	0.14	0.14	0.14	0.14
1 3⁄4		0.29	0.20	0.16	0.13	0.10	0.13	0.10	0.13	0.09	0.08	0.08						
23⁄4		0.49	0.37	0.29	0.28	0.21	0.23	0.19	0.22	0.16	0.16	0.14	0.08	0.14	0.14	0.14	0.14	0.14
3		0.54	0.42	0.33	0.32	0.24	0.26	0.21	0.24	0.18	0.18	0.16	0.10	0.16	0.16	0.15	0.15	0.15
4		0.75	0.59	0.46	0.47	0.35	0.36	0.30	0.33	0.26	0.26	0.23	0.16	0.23	0.22	0.20	0.20	0.20
5		0.95	0.76	0.60	0.62	0.45	0.47	0.39	0.42	0.33	0.33	0.29	0.22	0.29	0.28	0.25	0.24	0.24
6		1.00	0.94	0.73	0.77	0.56	0.57	0.47	0.50	0.41	0.41	0.35	0.28	0.36	0.34	0.30	0.29	0.29
7			1.00	0.87	0.92	0.67	0.68	0.56	0.59	0.48	0.49	0.42	0.34	0.43	0.40	0.35	0.33	0.33
8				1.00	1.00	0.78	0.78	0.65	0.68	0.55	0.57	0.48	0.40	0.50	0.46	0.40	0.37	0.37
9						0.89	0.88	0.74	0.77	0.63	0.65	0.55	0.46	0.57	0.52	0.45	0.42	0.42
10						1.00	0.99	0.82	0.86	0.70	0.73	0.61	0.52	0.64	0.58	0.50	0.46	0.46
11							1.00	0.91	0.94	0.78	0.80	0.68	0.58	0.71	0.64	0.55	0.51	0.51
12								1.00	1.00	0.85	0.88	0.74	0.64	0.78	0.70	0.60	0.55	0.55
13										0.93	0.96	0.81	0.70	0.85	0.76	0.65	0.60	0.60
14										1.00	1.00	0.87	0.76	0.91	0.82	0.70	0.64	0.64
15												0.94	0.82	0.98	0.89	0.75	0.69	0.69
16												1.00	0.88	1.00	0.95	0.80	0.73	0.73
18													1.00		1.00	0.90	0.82	0.82
20																1.00	0.91	0.91
22																	1.00	1.00

^{1.} E = Embedment depth (inches).

2. Cact = actual edge distance at which anchor is installed (inches).

3. C_{cr} = critical edge distance for 100% load (inches).

4. C_{min} = minimum edge distance for reduced load (inches).

5. fc = adjustment factor for allowable load at actual edge distance.

6. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.

7. f_{cmin} = adjustment factor for allowable load at minimum edge distance. 8. $f_c = f_{cmin} + [(1 - f_{cmin}) (C_{act} - C_{min}) / (C_{cr} - C_{min})].$

ET-HP[™] (formerly ET) Technical Information

Load-Adjustment Factors for ET-HP™ Adhesive in Normal-Weight Concrete: Spacing, Tension and Shear Loads

How to use these charts:

Epoxy Adhesives

- 1. The following tables are for reduced spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the spacing (Sact) at which the anchor is to be installed.
- 5. The load-adjustment factor (fs) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple spacings are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- 9. Adjustment factors are to be applied to allowable Tension Load Based on Bond Strength values or allowable Shear Load Based on Concrete Edge Distance values only.

Spacing	Tension	(f _s)
---------	---------	-------------------

•	•		•,														Ŀ			Particular of
	Dia.	3⁄8	1⁄2		5⁄8		3⁄4		7⁄8		1				11/8	1¼				
	Rebar		#	4	#	5	#	6	#	7	#	8	#	9		#1	10	#11		#14
Sact	E	31⁄2	41⁄4	6	5	<u>9 %</u>	6¾	111/4	7¾	131/8	9	15	9	161/8	101/8	111/4	18¾	123⁄8	20 %	15¾
(in.)	Scr	14	17	24	20	37 ½	27	45	31	52 ½	36	60	36	67 ½	40 ½	45	75	49 ½	82 ½	63
	Smin	1¾	21/8	3	21⁄2	4 ¾	3 %	5%	31/8	6 %	41⁄2	71⁄2	41⁄2	8 ½	5 ½	5 1/8	9 ¾	6¼	10 %	71⁄8
	f smin	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
1 3⁄4		0.89																		
2		0.89																		
4		0.91	0.90	0.90	0.90		0.89		0.89											
6		0.93	0.92	0.91	0.91	0.89	0.90	0.89	0.90		0.90		0.90		0.89	0.89				
8		0.95	0.93	0.92	0.92	0.90	0.91	0.90	0.91	0.89	0.90	0.89	0.90		0.90	0.90		0.89		0.89
10		0.96	0.95	0.93	0.94	0.91	0.92	0.90	0.91	0.90	0.91	0.90	0.91	0.89	0.91	0.90	0.89	0.90		0.89
12		0.98	0.96	0.94	0.95	0.91	0.93	0.91	0.92	0.90	0.92	0.90	0.92	0.90	0.91	0.91	0.89	0.90	0.89	0.90
14		1.00	0.98	0.95	0.96	0.92	0.94	0.91	0.93	0.91	0.92	0.90	0.92	0.90	0.92	0.91	0.90	0.91	0.90	0.90
16			0.99	0.96	0.97	0.93	0.95	0.92	0.94	0.91	0.93	0.91	0.93	0.90	0.92	0.92	0.90	0.91	0.90	0.91
18			1.00	0.97	0.99	0.93	0.96	0.92	0.95	0.92	0.94	0.91	0.94	0.91	0.93	0.92	0.90	0.92	0.90	0.91
20				0.98	1.00	0.94	0.97	0.93	0.96	0.92	0.94	0.92	0.94	0.91	0.94	0.93	0.91	0.92	0.90	0.91
24				1.00		0.95	0.99	0.94	0.97	0.93	0.96	0.92	0.96	0.92	0.95	0.94	0.91	0.94	0.91	0.92
28						0.97	1.00	0.95	0.99	0.94	0.97	0.93	0.97	0.93	0.96	0.95	0.92	0.95	0.92	0.93
32						0.98		0.96	1.00	0.95	0.99	0.94	0.99	0.93	0.97	0.96	0.93	0.96	0.92	0.94
36						0.99		0.97		0.96	1.00	0.95	1.00	0.94	0.99	0.97	0.93	0.97	0.93	0.95
40						1.00		0.99		0.97		0.96		0.95	1.00	0.99	0.94	0.98	0.94	0.95
45								1.00		0.98		0.97		0.96		1.00	0.95	0.99	0.94	0.96
50										0.99		0.98		0.97			0.96	1.00	0.95	0.97
55										1.00		0.99		0.98			0.97		0.96	0.98
60												1.00		0.99			0.97		0.97	0.99
65														1.00			0.98		0.97	1.00
70																	0.99		0.98	
75																	1.00		0.99	
821⁄2																			1.00	

See Notes Below

Spacing Shear (fs)

	gonoai	(13)							024 028		1000000000
	Dia.	3⁄8	1/2	5⁄8	3⁄4	7⁄8	1	1 1/8	1¼		
	Rebar		#4	#5	#6	#7	#8	#9	#10	#11	#14
Sact	E	31/2	4 1⁄4	5	6 3⁄4	7 ¾	9	101/8	111⁄4	123⁄8	123⁄8
(in.)	Scr	51⁄4	6 %	71⁄2	101/8	115%	131⁄2	151⁄4	16 <i>%</i>	18 %	18 %
	Smin	1¾	21/8	21/2	3 3⁄8	3 1⁄8	4 1/2	51/8	5 %	61⁄4	6¼
	f _{smin}	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
1 3⁄4		0.83									
2		0.84									
3		0.89	0.87	0.85							
4		0.94	0.91	0.88	0.85	0.83					
5		0.99	0.95	0.92	0.87	0.85	0.84				
6		1.00	0.99	0.95	0.90	0.88	0.86	0.84	0.84		
7			1.00	0.98	0.92	0.90	0.88	0.86	0.85	0.84	0.84
8				1.00	0.95	0.92	0.90	0.88	0.87	0.85	0.85
9					0.97	0.94	0.92	0.90	0.88	0.87	0.87
10					1.00	0.96	0.93	0.91	0.90	0.88	0.88
12						1.00	0.97	0.95	0.93	0.91	0.91
14							1.00	0.98	0.96	0.94	0.94
16								1.00	0.99	0.96	0.96
18									1.00	0.99	0.99
20										1.00	1.00

 * See page 13 for an explanation of the load table icons

<u>Q Q</u>

 * See page 13 for an explanation of the load table icons

- 1. E = Embedment depth (inches).
- 2. S_{act} = actual spacing distance at which anchors are installed (inches).
- 3. S_{cr} = critical spacing distance for 100% load (inches).
- 4. $S_{min} =$ minimum spacing distance for reduced load (inches).
- 5. f_s = adjustment factor for allowable load at actual spacing distance.
- f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (S_{act} S_{min}) / (S_{cr} S_{min})].$